
IP45: Architecture and Design
http://www.ip45.org/

Tomáš Podermański
Brno University of Technology

Center of Computer and Information Services

Antonı́nská 1, 601 90 Brno, Czech republic

Email: tpoder@cis.vutbr.cz

Matěj Grégr, Miroslav Švéda
Brno University of Technology

Faculty of Information Technology

Božetěchova 2, 612 66 Brno, Czech republic

Email: igregr,sveda@fit.vutbr.cz

Abstract—The IP45 architecture and protocol design pre-
sented in this paper is an extension of IPv4 protocol with ability to
regain the end-to-end connectivity in the networks placed behind
Network Address Translators (NATs). The proposed solution can
be implemented within existing networks with minimal effort, at
very low cost. The paper discusses the benefits and limitations
of the proposed solution and compares it with others. The
implementation available for all important platforms is also
briefly presented.

Keywords—Internet Protocol; End-to-End Communication

I. INTRODUCTION

Soon it will be more than twenty years since the Internet
community started to realize that the address space provided
by the IP protocol was not sufficient enough for future de-
ployment. Being aware of the problem, in 1993, IETF made a
request for a proper solution and in a few years, the first set
of standards was released and the protocol got the name under
which it is known today - IPv6 Protocol. The initial idea of
IPv6 deployment was quite simple. The new protocol would
have been adopted by vendors gradually and implemented into
existing networks along with existing IP protocol [1]. The
key motivation to deploy IPv6 might have been new features
such as security, mobility, autoconfiguration, etc., which were
added as the integral part of the design. The whole process of
the transition to IPv6 should have been finished before the
depletion of the IPv4 address pool. To support that, many
projects were funded and political forces in almost every
country, including great powers like U.S., EU and China,
created their own strategies and deployment plans to support
IPv6 adoption.

The statistics from the beginning of 2014 provided by
Geoff Huston [2], Google [3] or 6lab.cz [4], show that more
than 16% of Autonomous Systems (AS) announced IPv6 prefix
in the global BGP table. More than 3.5% of clients are able
to use native IPv6 connectivity and more than 6% of the
web content is available over IPv6. Some statistics such as
6lab.cisco.com [5], which take into consideration only the
most visited websites, indicate that in some countries this
number can reach up to 30%; however, if we look at the
numbers from a different perspective, the situation might not
look so optimistic. We could claim that 94% of web content
is available only over IPv4, 96% of users are not able to have
IPv6 connectivity and 74% of AS have never delivered a single
IPv6 packet.

It is quite difficult to underline the true reason why IPv6

deployment is not going well. The most operating systems
support IPv6 for more than a decade and major applications
like web browsers, mail, torrent, ssh, rdp clients do not
fall behind as well. It seems that the ultimate problem of
IPv6 deployment is the lacking support within the network
infrastructure. Some organizations and ISPs prefer playing the
waiting game with IPv6 deployment to avoid early adoption
disadvantages and to postpone the cost related to running
dualstack environment. In any case, IPv6 transition is a very
complex process involving technical, social and economical
factors. Today, even the most optimistic predictions expect that
the transition will not take less than decade.

Global Internet

ISP 1

ORG 2

S

A

NAT, CGN device

Host

ISP 2

ISP 3

ORG 1 ORG 3

ORG 3.1

ORG 4

ORG 5

Fig. 1: The Network Base on NAT Architecture

However, the IANA IPv4 address pool is already depleted
and ISPs, who want to start a new business or extend the ex-
isting one, have a problem. Deployment of IPv6 only services
do not help much as most services are available only via IPv4.

One of the options is to obtain an IPv4 address block on
the market. Although, the rules of Regional Internet Registries
(RIRs) tend to forbid trading with addresses, some of them
have already issued rules to legalize IP address transfers
between organizations. According to the information released
by one of the official address brokers [6], a single IP address
has a price range from $9.85 to $35. In the remaining regions,
address trading has become a part of gray market which obvi-
ously brings other problems as pointed out in Eric Osterweil’s
work [7].

Another solution to mitigate the problem with the depleted
address space is to deploy NAT or CGN into the network. Big
providers like Verizon [8] or British Telecom [9] have started
testing or deploying CGN in their network for some customers,
even if they have already started deploying IPv6.

However, insufficient address space is not the only reason
why NATs are used. One of the key advantages provided
by NAT is the address independency and reusing single IP
address by many devices. In practice, it does not matter how
many NATs are connected in the chain and the IP network
topology can be arranged into hierarchical and recursive struc-
ture as shown in figure 1. The remaining benefits provided
by NAT are, generally, the result of the two main attributes
mentioned before. In a very easy and cheap way, the address
independency allows us to implement features like small site
multihoming without running a BGP router [10], or to change
the upstream ISP without the readdressing of all devices.
Another frequent reason for using NAT is the consequence
of reusing a single IP address. Firstly, it hides the internal
structure of the network and secondly, it forbids a connection
with a device in the NATed network from the outside. Both of
them are considered as security features.

Nevertheless, the use of NATs brings some disadvantages
[11]. The common (and in many cases the only) reason to
condemn NAT is breaking the end-to-end connectivity. The
devices placed behind NAT, or several NATs, are not globally
addressable. Another disadvantage is the limited number of
sessions passing through NAT at the same time. This number
cannot cross the combination of possible ports in TCP or UDP
sessions with a single destination IP address. NAT also needs
to keep a state for every running session. Finally, it works on
the transport layer, thus it has to know every transport protocol
that can pass through it.

Despite many issues, NAT is a massively used and popular
technology which brings some interesting and often overlooked
benefits. According to Paul Francis [12], NAT has become the
integral part of current Internet architecture and we agree with
that since it can be found in almost every home or enterprise
network.

This work discusses and proposes an experimental network
architecture that tries to eliminate the key disadvantages of
existing network architectures and, at the same time, keeps
its benefits. The following section provides a short overview
of identified challenges, the addressing approaches and net-
working architectures. Section IV discusses the model of
IP45 architecture which is extended with design specification
in section V. Section VI discusses benefits and limitations
of the proposed architecture and compares it with others.
Finally, section VII deals with implementation matters which
are concluded in section VIII where the future work on IP45
architecture is also discussed.

II. IDENTIFIED CHALLENGES

There are some criteria that can be considered while
discussing network architectures. In our work we focused on
the following main first-principles and features:

Sattzer’s End-to-End argument represents one of the
basic principles when a new network architecture is designed
[?]. According to our observation, following the principle
determines whether a network architecture will be succesfull
or not.

Thanks to End-to-End addressing every device in the
network is able to send data to any other node connected to the

network directly. In current networks this principle is broken
by NAT and the transition to IPv6 should have solved the
problem.

Address space hierarchisation allows to keep a number
of routing entries, especially at the top in the hierarchy of
the global network, at the necessary minimum. The good
example of such architecture is IPv6 in which every sub-
network (in IP world known as Autonomous System) can be
determined by a single routing entry. In practice, the benefit
of hierarchised address space in IPv6 is impaired by Provider
Independent addresses which are used for multihoming or to
avoid demanding readdressing within the site.

Address space independency allows the network to re-
connect a part of subtree to another node without any need
for readressing within a child subtree. Address space inde-
pendency can solve some crucial problems of hierarchical
address space mentioned in the previous paragraph. Protocol
IPv6 is a nice example which shows that the absence of
address space independency implies some solutions where one
problem can lead to another. In IPv6 every host (or interface)
needs to know a network prefix to which is connected. It
can be set either manually or advertised by a router. For
the distribution of prefixes across routers, IPv6 must have an
additional mechanism called Prefix Delegation [13]. If network
prefix is changed, new prefix information has to be distributed
to every IPv6 host. As the readdressing of hosts is in many
cases very complicated, IPv6 offers some solutions to mitigate
the problem. Firstly, every IPv6 interface can configure an ad-
ditional, IPv6 address1. But the existence of multiple addresses
brings another complication. To choose a proper IPv6 address
as the source address in the outgoing packets, every IPv6 host
must keep the Priority Table. Another, relatively controversial,
solution is known as IPv6-to-IPv6 Network Prefix Translation
[14]. It allows to map the global IPv6 prefix assigned from the
ISP to the Unique Local IPv6 Unicast Address used inside of
the site. But it brings many disadvantages and limitations to
IPv6 architecture caused by NAT. The third approach to deal
with address space independency in IPv6 is to obtain Provider
Independent (PI) address space and to announce it within its
own Autonomous System (AS) to the global BGP. However,
if every organization takes its own PI prefix, the number of
routing entries and updates in BGP will exceed the tolerable
limit. In IPv4 the absence of address space independency is
not as noticeable as in IPv6. The problem is mitigated by
NATs which add address space independency into IPv4 address
schema. On the contrary, architectures such as RINA [15] or
IPNL [12] use address space independency as a key feature of
protocol design.

Session independency together with address space inde-
pendency is an important prerequisite to multihoming and
mobility. Thanks to session independency the address of end
nodes can be changed during running session. Today, neither
IPv4 nor IPv6 support session independency and the feature
must be solved on top of those protocols.

Scalability is a feature which allows to expand the nework
without creating some kind of bottleneck. In current network
architectures there are many potential bottlonecks which could
restrict future network growth. For example, current global

1It could be Link-Local, ULA or another global address.

routing table grows every day and all routers must keep
all routes connected to the global routing system. Another
example with poor scalability is NAT, where a NAT device
has to keep the state for every running session in memory.

Implementation and operational complexity are not
directly related to the architectural principles, however, they
represent a very important factor considering implementation
and operational cost. It is obvious that a more complex design
makes implementation, testing debugging more difficult and
more expensive.

Adoption difficulty is a factor similar to the previous one.
The protocol design must take into account existing protocols,
technologies and application interfaces. The transition process
of IPv6 points out how important it is.

It may seem that every principle or feature previously men-
tioned has been already solved in some way, but adding them
together into one architecture is a real challenge. For example,
an architecture which supports address space hierarchy (e.g.
LNAT [16] or IPNL [12]), usually contradicts the design re-
quirements of multihoming and mobility which again disagree
with scalability and Saltzers’s end-to-end principle. Similar
situation is with NATs. NAT perfectly implements address
space hierarchisation and independency and can be adopted
very well, but it does not support End-to-End addressing and
has poor scalability. Concerning mobility, both IPv4 and IPv6
designs do not support session independency and the mobility
solution is built on top of protocols such as MIPv6, MPTCP,
PMIPv6 or SHIM6 [17]). As a result, none of those solutions
is practically used and mobility in IPv4 and IPv6 is therefore
rather a theoretical concept than a feature used on daily basis.

III. RELATED WORK

One of the first works related to the topic of address space
exhaustion can be found in Van Jacobsons’s draft of the LNAT
[16]. A couple of years before IETF began its search for the
future Internet solution, Jacobson had pointed out two basic
concepts of address space expansion. Firstly, the conversion
to a new protocol with larger address space, secondly, reusing
the existing protocol by dividing it into more domains. Being
aware of the difficulties with the transition, Jacobson proposed
a solution in which the networks are organized in Addressing
Domains. The communication between the domains is based
on a mapping table which is built according to modified DNS
queries and responses. After IETF announced the call for a new
Internet architecture, most of the proposals like SIPP (PIP)
[18], CATNIP [19] and TUBA [20], preferred to use an in-
compatible protocol with an incompatible addressing scheme.
The key focus was put on features such as autoconfiguration,
security and mobility and the process of transition was not
expected to be so demanding. Some early attempts to bring
IPv4 compatible architecture can be found in EIP [21] where
the packets use an additional IPv4 option header. The extra
option header extends addressing schemes with an extra 32
bits. There were doubts about the performance of the packet
processing because IPv4 options are, typically, not processed
by specialized hardware. Today, EIP is marked as deprecated
[22].

A similar approach was taken by IPv4+4 [23]. The compat-
ibility with IPv4 protocol is secured by adding a shim header

that carries extended address information. For devices which
do not support IPv4+4, the traffic acts as regular traffic that
bears IPv4+4 protocol on the transport layer. IPv4+4 proposes
an addressing scheme in which the Internet is separated into
address areas called realms. Every realm has its own address-
ing scheme independent of the others. When a packet is sent
to a different realm, it is passed through realm gateways which
are responsible for swap, an operation that allows IPv4+4
packet delivery within a targeted realm. Unfortunately, even
if IPv4+4 architecture was implemented [24], and later the
architecture was modified to use LSSR route option [25], the
work on the original architecture would not have continued,
as it was confirmed by the author.

Mike O’Dell proposes different address semantics and
separation. He divides the address into two parts; Locator and
Identifier of the communicating device. His scheme [26] was
not implemented, but a very similar approach was used in
many proposals [17], [27] as summarized in [28]. Some of
that ideas were standardized later in LISP architecture [29].

Some authors tried to take a completely different approach.
In works mentioned above, the address was usually taken as a
number with a fixed length which could be, in some cases, mul-
tiplied. In the architecture proposed by Nimrod [30] and later
by IPNL [12] and TRIAD [31], the numerical address is not
a valid identifier anymore. The named address is represented
by a character string which is, usually, identical to a fully
qualified domain name (FQDN). This way the architecture can,
theoretically, operate with almost infinite address space and
create a hierarchical network with unlimited levels. Especially
IPNL divides the network into different realms where each
realm is of the same manner as it is used in DNS. These ideas
are later extended in NUTSS [32] and STUNT architecture.
One of the biggest advantages is that all proposals expect to
build a topology on the top of the existing IPv4 infrastructure
which accepts the existence of NATs.

With regards to networking architectures and addressing,
the substantial RINA project [33] cannot be omitted. RINA
sees the networking communication as a common interpro-
cess communication (IPC) where the communication passes
through repeating the same IPC layers which are named DIFs.
In this way RINA allows the building of a recursive structure
of the network.

The remaining group of solutions is not directly designed to
extend the address space. There are two protocols, UpNP/IGD
[34] and NAT-PMP [35], which use almost the same principle.
A client placed behind NAT can send a packet with a map
request to the NAT device. After that, the NAT device creates
a binding between the port on the public address and the
private address of the device that requested it. Those protocols
are supported by many vendors producing CPEs and network
devices. Nevertheless, there are several critical disadvantages
regarding the use of such techniques. Firstly, the protocols
expect only a simple L2 topology. Secondly, the protocols
work only on one level of NATs. If the device is placed behind
two levels of NATs (for example CGN and home NAT), the
protocols do not work. Thirdly, NAT devices have to keep
the information about mapping state. Another NAT traversal
protocol, STUN [36], faces similar problems. It works only
for UDP, requires to cooperate with STUN servers on public
address and might not work properly with all forms of NAT.

IV. THE MODEL OF IP45 NETWORKS

The IP45 network model is represented by the collection
of Administrative Domains (AD) which are organised into a
tree structure. Every AD represents a node of the tree and the
depth is defined as a Level. At the top of the hierarchy there is
the root AD called Administrative Domain Level 0 (AD 0). An
AD can be connected to the parent or child AD through Border
Gateway (BGW). BGW configures an Upstream Address (UA)
and a Downstream Prefix (DP). The UA is an address of the
address space which belongs to the parent AD. The DP defines
relevant address space for devices connected within AD. When
a packet is supposed to be delivered to or through the parent
AD, BGW performs the operation, as shown in equation 1.
While a packet with destination (D) and the source (S) address
passes BGW, the BGW extends (E:) a relevant part of the
source address (S) with configured UA (α). In the opposite
direction, there is a symmetric operation. When a packet is
delivered to or through child AD the destination address (Dβ)
is reduced (R:) by DP (β) to get the destination address (D)
within the child AD.

S

D

E:α
−−→

S

Dα
,

Sβ

D

R:β
−−→

S

D
(1)

When we used these two simple operations within the tree
structure of ADs, we come across two basic equations. The
first one (2) describes a situation when a packet from the host
S placed within AD αn goes to the root AD (AD 0), and
the second one (3) refers to a situation when the packet is
delivered to its destination - the host D placed in the AD βn.
To make it simple, we can say that the source address of a
packet extends when it passes through BGWs to the root AD,
and the destination shortens when it goes to the designated
AD. Figure 2 illustrates such a situation.

When the host D gets a packet, the source and destination
addresses are exchanged (4) and packets with a response can
be sent back to the host S the same way.

Sαnαn−1 . . . α0

D
→

D

Sαnαn−1 . . . α0

(4)

The architecture, however, does not strictly relay on the
incremental sequence of the level of ADs. Any AD can be
omitted and the extension or reduction operation is avoided.
Formally said, the DP (α) and UA (β) has an empty value.
Practically, it means that AD 4 can be directly connected to
AD 0. There is also a possibility to make some shortcuts in
the tree structure. Such a situation is illustrated in figure 2
with a dotted line. Two ADs, which are not a part of the same
subtree, are connected via direct link. In that case the BGW
performs several extension and reduction operations at once
and delivers data directly to the neighbouring AD.

A. Session Identification

The communication between applications in the IP45 net-
work expects the use of the traditional client server model.
The application can use connection-oriented or connectionless
abstract layers. When a client needs to connect to the server, it
uses the server’s address (to identify the interface of the host)

S

D

Administrative Domain

Border Gateway

E: , R:

E:

E: R:

R:

R:

root

Fig. 2: The Model of IP45 Network

and the port (to identify the application). In the traditional
TCP/IP approach, every connection C is defined as a tuple
C(CA, CP, SA, SP) where CA is a client IP address, CP stands
for TCP port and SA and SP represents server address and
server port. The connectionless communication is organized in
a similar way. In the IP45 model of the network, the connection
is defined as a triplet C(SID, CP, SP), where CP and SP have
the same meaning as before and SID refers to the Session
Identifier of the connection. The SID is generated as a unique
number when a client sends the request to establish connection
or when the first packet is sent in connectionless protocols.

In fact, the address in IP45 network represents only a
topological locator of the host (or its interface) where the
first initial packet to establish connection is sent. SID, and
practically the whole session, is independent of the source or
destination addresses which means that the address can change
on both the client’s and the server’s side, without breaking the
session.

V. THE DESIGN OF IP45 PROTOCOL

The following sections discuss the details of all relevant
components of IP45 design. The essential part of IP45 is IP45
Host. IP45 Host is a device able to address another IP45 Host
and maintain the mutual exchange of IP45 packets between
them. IP45 Hosts are organized into Administrative Domains
(ADs). As was discussed before, the ADs represent a tree
structure in which the depth of the tree defines the Level
of administrative domain. An example of such structure is
depicted in figure 3. There are four different ADs - Global
Internet, home network (HOME), organization network (ORG)
and service provider (ISP). AD 0 represents current public
Internet. The home network AD 4 is connected through ISP’s
AD 2. The organization network AD 4 is directly connected to
AD 0. In this case, ADs of level 1-3 were omitted.

Packets inside of AD are delivered as regular IPv4 packets.
Practically, the network, within a single AD, can be imple-
mented from a simple L2 network (e.g. a small home network)
up to a network with complex topology, with many routers
(e.g. ISP’s or corporate network). When a packet hits the

S

Dβnβn−1 . . . β0

E:αn

−−−→

Sαn

Dβnβn−1 . . . β0

E:αn−1

−−−−−→

Sαnαn−1

Dβnβn−1 . . . β0

. . .
E:α0

−−−→

Sαnαn−1 . . . α0

Dβnβn−1 . . . β0

(2)

Sαnαn−1 . . . α0

Dβnβn−1 . . . β0

R:β0

−−−→ . . .
Sαnαn−1 . . . α0

Dβnβn−1

R:βn−1

−−−−−→

Sαnαn−1 . . . α0

Dβn

R:βn

−−−→

Sαnαn−1 . . . α0

D
(3)

Global Internet, AD 0

100.64.0.0/16

192.168.116.0/24

A

203.0.113.249

100.64.112.114

192.168.116.115

203.0.113.249.112.114.115
ISP, AD 2

HOME,

AD 4

BGW 2

BGW 4

B
198.51.100.11

10.1.0.0/16

C

ORG,

AD 4

Border Gateway (BGW) IP45 HostA

Administrative Domain (AD)

Fig. 3: Structure of IP45 Networks

border of AD, it is processed by a Border Gateway (BGW) that
performs the reduction or expansion operation on the source
or destination IP45 address and sends out the IP45 packet to
the neighbouring AD.

From the user’s perspective, the IP45 address of IP45 Host
placed inside of AD seems to be a composition of two com-
ponents. Firstly, a relevant part of the address which reflects
the hierarchical structure of ADs, and secondly, the address
assigned to the host within AD. With help of figure 3, we can
illustrate the situation on an example in which host A wants
to exchange some data with host B. The host A is connected
through AD 4 and AD 2 to AD 0 (root AD). The host B is
placed directly in AD 0. When the host A sends a packet to host
B with a destination address 198.51.100.11, the source address
of host A visible to host B will be 203.0.113.249.112.114.115.
If the host B (or any other host of course) wants to send a
packet to the host A, it will just use 203.0.113.249.112.114.115
as the destination address.

The figure 4 shows another example of packet flow in IP45
network. There are three differed cases. In the first case the
client C sends packet to the server S. Both the client and the
server are placed behind BGWs. The figure shows how the
source and destination address is changed while the packet
is delivered to the server S. The second case describes the
situation when the packet with response is delivered back to the
client C. The third case depicts same situation as before with
one difference. The client is placed behind ordinary NAT/CGN
device.

C S

Border Gateway (BGW) IP45 Host (Client)C

S:192.168.116.115

D:147.229.3.11.116.114

S:203.0.113.249

D:147.229.3.11.116.114
S:203.0.113.249

D:192.168.116.114

C

192.168.116.115/24

S

192.168.116.114/16
147.229.3.11

S:192.168.116.115

D:147.229.3.11.116.114

S:203.0.113.249.115

D:147.229.3.11.116.114

203.0.113.249

S:203.0.113.249.115

D:192.168.116.114

C S

S:147.229.3.11.116.114

D:192.168.116.115

S:147.229.3.11.116.114

D:203.0.113.249.115
S:192.168.116.114

D:203.0.113.249.115

IP45 Host (Server)SNAT/CGN Device

Fig. 4: Example of IP45 Packet Flow

A. IP45 Address, IP45 Stack and Session ID

The IP45 architecture introduces three new formats of
address: IP45 Address, IP45 Stack and Session ID. From
the user’s and application perspective, the most important is
the IP45 Address. The address is used by applications which
connect to the remote host.

The maximum length of IP45 Address is 128 bits. The
full address is represented by 16 octets. A single octet
can be written as a single number with value 0-255 (eg.
0.0.0.0.0.0.0.0.0.0.0.203.0.113.249.115). However, such nota-
tion is quite confusing. To make the address well-organized,
the leading octets with zero value should be avoided (eg.
203.0.113.249.115). In the case that the first twelve octets are
set to zero value, the IP45 address would not be distinguishable
from the IPv4 address. Therefore, IP45 address must be noted
with at least one leading zero (eg. 0.203.0.113.249).

In practice, IP45 address is not usually used in direct
format but in the form of symbolic names. On the Internet, the
conversion between these symbolic names and IP address is
provided by the DNS system. There are two kinds of records in
the DNS system. The A record, which returns a 4 byte number
that represents the IPv4 address, and AAAA record, which
returns a 16 byte number that represents the IPv6 address.

The IP45 architecture uses the DNS in the same way as
it is used in IPv4 and IPv6. To keep the compatibility with
applications (as will be discussed later in section V-D), IP45

reuses AAAA records to get information about the IP45 address.
To distinguish IP45 address from IPv6 address, the architecture
reuses a block of IPv6 address 0::/8 which was originally
reserved by IETF for IPv4-Compatible IPv6 Address. Nev-
ertheless, the block was never used and, in January 2006,
was deprecated [37]. This means that such addresses can be
easily reused for addressing in IP45 without any conflicts with
existing IPv6 addressing schemes2.

For converting IP45 address into its symbolic name, the
situation is even easier. IP45 uses PTR records in the in-
addr.arpa. zone. Thanks to the notation of IP45 address, there
is no need to do any additional changes into the DNS. PTR
can be used in IP45 in the same way as it is in IPv4, only the
levels of delegation are extended according to the length of
IP45 address. Thus, the address from the previous example
(203.0.113.249.115) will be noted as 115.249.113.0.203.in-
addr.arpa..

Require: A45 is IP45 Address
Require: A4 is IPv4 Address
Require: M is Mark Value
Require: S is IP45 Stack

1: procedure IN45TOSTCK45(IP45)
2: M ← 0
3: while A45[M] = 0 do
4: M ←M + 1
5: end while
6: A4[0..3]← IP45[M..(M + 3)]
7: M ←M + 4
8: if M < 12 then
9: S[(M − 4)..11]← A45[M..15]

10: end if
11: M ← 16−M
12: return A4,M, S
13: end procedure

Algorithm 1: Converting IP45 Address into IPv4 Address, Mark and
IP45 Stack

For packets which are delivered via the network, the IP45
Address is divided into IP45 Stack and IPv4 Address. The
IP45 Address can be algorithmically (1) converted into IPv4
address, IP45 Stack and Mark, and vice versa. The relationship
between those fields is depicted in 5.

112 114 115

203 0 113 249

IPv4 Address

IP45 Stack

3

Mark

IP45 Address

203 0 1130 0 249 112 114 1150

Fig. 5: Relationship Between IP45 Stack, IPv4 address, Mark and
IP45 Address

The third new type of address introduced by IP45 is
Session ID (SID). SID is a 128 bit number that identifies
all packets which belong to one session. The session could

2Except for the case of IPv4-Mapped IPv6 Address, which must be avoided
by the configuration of the network.

be a TCP/SCTP session, a UDP stream, a GRE tunnel, etc.
Usually, SID is invisible to applications or users. To display
SID makes sense only for debugging purposes. The basic
format for displaying SID is the hexadecimal representation
that can be shortened to the first and last 7 characters of its full
notation divided by two dot symbols (eg. ca0903..418d803).
The use of SID will be discussed in the V-D section.

B. IP45 Header Format

IP45 protocol uses a special header format of packets.
The basic content of IP45 packets is not different from other
protocols like IPv4 or IPv6. The packet starts with IP45
header area which contains fields needed by the protocol
itself. After the IP45 header, the packet bears the header of
transport protocol (TCP, UDP, ICMP, GRE, etc.) and data
related to upper layers. The structure of the IP45 packet header
is depicted in figure 6.

Session ID

Destination IP45 Stack

S Mark

Source IP45 Stack

Zeros 2

UDP Length Zeros

IP 45 source port IP 45 destination port

Destination IPv4 Address

Source IPv4 Address

Next Header

TTL Protocol Header Checksum 1

Identification Flags Fragment Offset

M Ver TOS Total LengthS Ver

D Mark

Fig. 6: The IP45 Header Format

The IP45 packet header consists of three parts. Firstly, there
is a part of the header compatible with IPv4 header (dotted
area). Any device supporting IPv4 protocol can treat IP45
packets as regular IPv4 traffic. Secondly, there is a part that
allows IP45 packets to pass through all forms of NAT devices
which treat them as if it was regular UDP traffic (hatching
area). The last part of the packet header is IP45 specific. There
are several fields which help to deliver IP45 packets to IP45
Hosts through Border Gateways.

Concerning the first part of the header, the meaning of
the fields is mostly equivalent to the definition of IPv4 packet
header format, as it is defined in RFC791 [38]. Similarly, the
fields of the second part of the header are equivalent to the
definition of UDP header format described in RFC768 [39]. In
the following section we will focus only on the fields which are
relevant to IP45 or which modify the meaning of the original
fields.

M Ver, S Ver (4 bits): The fields indicate Major and
Sub Version of the protocol. The value must be set to 4
for the Major, 5 for the Sub. The M Ver and S Ver fields
together indicate the version of protocol, IP version 4.5 (IP45).
The semantics of both fields is overloaded in comparison to
the original specification in which the S Ver field replaces
the original IHL field defined in RFC791 [38]. Originally,
the value of the field determines the total size of IP header
including the optional header. As the IP45 header does not
support IP options, this value is always set to 5.

Protocol (8 bits): This field is always set to 17 which is
the value reserved for UDP protocol on the upper layer. The
field identifies only the transport protocol for devices which
do not support IP45 protocol natively.

IP 45 Source/Destination Port (16 bits): Two fields which
are always set by the sending host to the value 4. For devices
that do not support IP45 natively, the fields identify the UDP
source and the destination port3. Although, the sending host
must set the value of those fields to 4, the receiving host can
receive the packets for which the value of IP 45 Source port
can be modified. It indicates that the IP 45 Host, who has
originally sent the packets, is placed behind NAT. The use of
such fields will be discussed in the section V-D.

Zeros (16 bits): the field filled with zeros. Originally, the
field is reserved for UDP checksum in UDP header. Zero value
indicates that no checksum is performed on UDP packets.

The fields described until now were more or less inherited
fields which make IP45 packets compatible with IPv4 and
NATs. The following fields extend the header and allow the
IP45 protocol to use new features. For most of them, we
provide only a brief description. Sections V-C and V-D will
clear up the meaning and use of the fields in detail.

Next Header (8 bits): This field identifies the transport
protocol. The meaning is the same as the field Protocol used
in IPv4 or the field Next Header used in IPv6. Similarly to
IPv4 or IPv6, the concept of extension headers can be used
here as well. Also the use of shim headers like ESP or AH
may be possible.

Src/Dst Mark (4 bits): The fields determine the number of
valid bytes of IP45 Source/Destination Stack. In other words, it
indicates the current size of the stack. The fields are primarily
used by Border Gateways.

Zeros 2 (16 bits): The zero values to align the header.

Source/Destination IP45 Stack (96 bits): The field, where
a relevant part of the Source or Destination IPv4 address is
stored as packets, travels through Administrative Domains.
IP45 Stack, together with IPv4 address and Mark, represent
the IP45 Address. The algorithm that shows how the Border
Gateways manipulate with the IP45 Source and IP45 Destina-
tion Stack will be discussed in section V-C.

SID (128 bits): A unique randomly generated ID to
identify the session between two IP45 Hosts. SID will be
discussed in detail in section V-D.

3According to IANA, UDP port 4 is not assigned, so it can be used without
causing any conflicts.

C. IP45 Border Gateway (BGW)

The role of the Border Gateway (BGW) is to allow packets
to traverse between Administrative Domains. In general, BGW
works as a regular IPv4 router with an extra code performing
operations on the interface where the Upstream Address (UA)
is configured. Algorithm 2 shows the operation performed by
BGW according to the model described in chapter IV.

Require: UA is Upstream Address
Require: DP is Downstream Prefix
Require: DL is Length of Downstream Prefix in Octets
Require: SA is Source IPv4 Address
Require: DA is Destination IPv4 Address
Require: SM is Value of Source Mark
Require: DM is Value of Destination Mark
Require: SS is Source IP45 Stack
Require: DS is Destination IP45 Stack
Require: CS is Checksum

1: procedure BGWPASSPKT

2: if not CheckIP54Fields then
3: ProcessAsIPv4Packet()
4: end if
5: if SA matches DP/DL then
6: SM ← SM +DL
7: if SM > 12 then
8: DropPacket()
9: end if

10: SS[(11− SM)..(DL− 1)]← SA[0..(DL− 1)]
11: SA← UA
12: end if
13: if DA = UA & DM > 0 then
14: DM ← DM −DL
15: DA[0..(DL− 1)]← DP [0..(DL− 1)]
16: DA[DL..3]← DS[(11−DM)..(11−DM +DL)]
17: end if
18: UpdateCksum(CS)
19: end procedure

Algorithm 2: Operations Performed on IP45 Border Gateway

At the beginning, the algorithm checks whether the pro-
cessed packet is a valid IP45 packet. This is proceeded by
checking several items for proper values. The Protocol field
must be set to value 17 (protocol UDP) and either IP 45 Source
Port or IP 45 Destination Port must be set to 4. To be sure
that the packet is a valid IP45 packet, the Zeros 2 field is
verified. If any of those conditions are not satisfied, the packet
is processed as a regular non IP45 packet.

The core algorithm is divided into two parts. Firstly, the
part which deals with the situation when IP45 packets traverse
from the child to the parent AD. As the entry condition, the al-
gorithm checks whether the first octets defined by Downstream
Prefix Length are equivalent in the Source Address and in
configured Downstream Prefix. If the condition is satisfied, the
value of the Source Mark is increased by value of Downstream
Prefix Length. If the value of Source Mark is higher than 12, it
indicates that there is no more space in the IP45 Source Stack
and the packet is dropped. Depending on the implementation,
the original host can be informed by an ICMP message that
the packet could not be delivered. Nevertheless, in major cases
the packet is passed to the next phase where the Source IP45
Stack is extended on the left side with the top octets from the
Source IPv4 Address. The number of octets to extend is the

value which is expressed as 4 - Downstream Prefix Length.
Finally, Source Address is replaced by Upstream Address.

To clarify further, figure 7 shows an example of the opera-
tion on the BGW where the Downstream Prefix is configured as
100.64.0.0/16. This implies that the value of the Downstream
Prefix Length is 2 and the Upstream Address is configured as
203.0.113.249. The BGW receives a packet with the Source
IPv4 address 100.64.112.114 and the Source IP45 Stack set
to 115. The BGW performs the operation described above
and the packet leaves the router’s interface with the Source
IPv4 address set to 203.0.113.249 and the Source IP45 Stack
Address extended to 112.114.115.

115

100 64 112 114

Src IPv4 Addr

Src IP45 Stack

203 0 113 249

Upstream Address

(147.229.240.249)

2

Prefix

Length

112 114 115

203 0 113 249

3

Src Mark

1

Src Mark

Src IP45 Stack

Src IPv4 Address4 – Prefix Len

S Mark + Prefix Len

0 9 10 110 10 11

Fig. 7: Modification of the Fields in IP45 header when a packet is
received on Downstream Prefix interface

When a IP45 packet goes in the opposite direction, from
the parent to the child AD, a symmetric operation is performed.
At the beginning the value of the Destination Mark is checked.
The zero value indicates that the packet already reached the
target host. For packets with a value greater than zero, the BGW
performs a reduction of the Destination IP45 Stack by simply
decreasing the value of the Destination Mark by the value
of Downstream Prefix Length. The Destination IPv4 Address
is composed from the reduced part of the Destination IP45
Stack which is placed to the top octets. The remaining (bottom)
octets are filled with the bottom octets from the Downstream
Prefix. Again, in an example with the configuration of BGW
used previously, the BGW receives a packet with the Destina-
tion IPv4 Address 203.0.113.249 and Destination IP45 Stack
set to 112.114.115. At the output the Destination IP45 Stack is
reduced to 115, and the resulting Destination IPv4 Address is
100.64.112.113. The 100.64 is obtained from the Downstream
Prefix and 112.113 is the reduced part of the Destination IP45
Stack. The operation is depicted in figure 8.

In general, the whole algorithm contains a few trivial com-
parisons and shifts of the memory blocks. As the consequence,
the algorithm can be easily implemented as a specialized high
speed hardware block or several parallel blocks implemented
in an FPGA or ASIC chip.

D. IP45 Host

The IP45 host is responsible for sending and receiving IP45
packets, managing sessions and providing API for applications.
The interface between an application and the network interface

112 114 115

203 0 113 249

Dst IPv4 Addr

Dst IP45 Stack

100 64

Downstream Prefix

(100.64.0.0/16)

2

Prefix

Length

112 114 115

100 64 112 114

1

Dst Mark

3

Dst Mark

Dst IP45 Stack

Dst IPv4 Addr

4 – Prefix Len

Prefix Len

Dst Mark - Prefix Len

0 9 10 11 0 9 10 11

Fig. 8: Modification of the Fields in IP45 header when a packet is
received on Upstream Address interface

provided by operating system is typically provided through
universal sockets API. When a new protocol is introduced, the
typical solution is to implement a new socket type that allows
the application to use the protocol. However, this approach
requires a redesign of all applications. For that reason IP45
reuses the existing IPv6 socket interface. Once the application
is prepared to use IPv6 sockets, it can automatically use the
IP45 protocol without any modification.

When an application needs to establish a connection to a
remote host, it uses a system call in which the address of the
remote host is handed over. In case of IP45, the application
makes a standard call to open/bind the IPv6 socket; it uses
overloaded semantics of the IPv6 address as discussed in
chapter V-A. For example, if the application needs to connect
to the IP45 host with the address 203.0.113.249.112.113.115,
the connection is made to the address ::00cb:0071:1870:7173,
which is the hexadecimal IPv6 notation of the same address.
Through the address prefix ::/8 the system is able to recognise
that the requested type of socket is IP45 and that the call is
internally interpreted as the IP45 socket operation.

Require: DA is Destination Address
Require: S is Socket structure

1: procedure INITSOCK(S,DA)
2: if DA matches :: 0/8 then
3: S.Type← IP45
4: S.SessionID ← Random()
5: (A4,M, S)← In45ToStack45(DA)
6: S.RemoteAddr ← A4
7: S.RemoteMark ←M
8: S.RemoteStack ← S
9: S.RemotePort← 4

10: InitSockIPv4(S)
11: else
12: S.type← IPv6
13: InitSockIPv6(S)
14: end if
15: end procedure

Algorithm 3: Initialization of IP45 Socket on IP45 Host

The algorithm 3 displays an operation performed during the
IP45 socket initialization. After identifying that the operation is
requested to IP45 socket, initial steps are performed. Firstly,

a randomly generated SID is assigned to the internal socket
structures. Then the remote address is decomposed into Remote
IPv4 Address (S.RemoteAddr), Remote Mark (S.RemoteMark)
and Remote IP45 Stack (S.RemoteStack) as was described in
the section V-A. Lastly, the Remote IP45 Port (S.RemotePort)
is set to value 4. The rest of the initialization procedure is the
same as for the common IPv4 socket.

After initialization, the IP45 socket is ready to send/receive
packets to/from the network via the standard system calls.

Require: S is Socket Structure
Require: P is Packet Buffer

1: procedure SENDPKT

2: if S.type is ip45 then
3: P.SessionID ← S.SessionID
4: P.DstIPv4Addr ← S.RemoteAddr
5: P.DstIP45Stack ← S.RemoteStack
6: P.DstIP45Mark ← S.RemoteMark
7: P.DstIP45Port← S.RemotePort
8: P.SrcIP45Port← 4
9: P.SrcMark ← 0

10: P.Protocol← UDP (16)
11: P.Zeros2← 0
12: SendIPv4Pkt(P, S)
13: else
14: SendIPv6Pkt(P, S)
15: end if
16: end procedure

Algorithm 4: Sending IP45 Packet

As it is shown in algorithm 4, several operations must be
performed to send a packet. If the socket was initialized as
IP45, the procedure begins to prepare the header of the IP45
packet. The items like Destination IPv4 Address, Destination
IP45 Socket, Destination Mark, Destination IP45 Port are
directly copied from their ”remote” equivalents stored in the
socket structure. The Source Mark and Source IP45 Stack are
set to zero values. The remaining fields in the IP45 packet
(Length, Checksum, Source IPv4 address, etc.) are set by
standard IPv4 procedures as the packet is passed to the output
interface.

The receiver must at first distinguish IP45 from non-IP45
IPv4 packets. The same check we used as the entry condition in
the BGW algorithm. The whole procedure of receiving packets
is shown in algorithm 5. After the entry check detects whether
the packet is a valid IP45 packet, the lookup for the socket
structure is performed. Firstly, on existing IPv6 sockets and, if
it fails, the lookup is performed within structures representing
IPv4 sockets. This way the IP45 protocol can be connected
to the listening socket on both, IPv6 and IPv4, sockets. If the
representation of the socket is not found in the system, the
ICMP error message is returned back to the communicating
peer. Otherwise, items in the internal socket structures are
updated and the content of packet can be handed to the
application.

The algorithms described above expect that IP45 is im-
plemented as a part of socket functions which are, in most
systems, implemented as a part of the kernel code as it is
shown in figure 9.

The main advantage of this approach remains that the IP45

Require: P is Received Packet
Require: S is Socket Structure
Require: PS is Protocol Specific Structure

1: procedure RECVIP45PKT(P)
2: if not CheckIP54Fields then
3: RecvIPv4Packet(P)
4: end if
5: PS ← GetProtocolSpecific(P.NextHeader, P)
6: S ← LookupIPv6(P.SessionID, PS)
7: if not S then
8: S ← LookupIPv4(P.SessionID, PS)
9: end if

10: if S.type is ip45 then
11: S.RemoteAddr ← P.SrcIPv4Addr
12: S.RemoteStack ← P.SrcIP45Stack
13: S.RemoteMark ← P.SrcIP45Mark
14: S.RemotePort← P.SrcIP45Port
15: HandleToUpperLayer(P)
16: else
17: ICMPErrorMessage()
18: end if
19: end procedure

Algorithm 5: Receiving IP45 Packet

IPv6 Application

IPv6 stack IP45 stack
dst: 0::/8

IPv6 stack operations

IPv6

packets
IP45

packets

Kernel

Space

Fig. 9: IP45 Data Flow in the Kernel

traffic is processed directly by system calls without any extra
overhead. Nevertheless, there are two barriers. Firstly, to make
these changes in major operating systems is not possible due
to enclosed development. Secondly, even if the kernel source
is available, patching and recompiling is an option only for
advanced users.

Another possibility is to add the IP45 host’s support that
is executed as userspace process. This can work almost on
all operating systems including those whose development and
access to the sources are limited. In such case, IP45 packets
are directed to IPv6 socket as a regular IPv6 traffic. When the
traffic passes through the system routing table, the traffic that
matches the prefix 0::/8, is diverted to the user space process
as shown in figure 10

The process replaces the original IPv6 header by IP45
header and sends it out as regular IPv4/UDP traffic. At the
same time, the user process listens to the UDP socket for
incoming IP45 packets. When the packets arrive, they are
reshaped back to the IP45 packet, and injected to the system
as a regular IPv6 packet. The disadvantage of this approach
is that the packets have to be passed within the operating
system twice. It could be reflected in the resource consumption
which would be higher in comparison to IP45 implemented in
the kernel. It would not be a problem on the client systems

where the traffic usually does not cross gigabit speed, but the
performance could be an issue on servers where traffic can
reach up to several Gb/s.

IPv6 Application

IPv6 stack IP45 daemon

dst: 0::/8

IPv6 stack

IPv6 packets

IP45

packets

R

IPv6 packets

IPv4 stack

Fig. 10: IP45 Data Flow Using IP45 Translator

E. Addressing in Administrative Domains

As it might seem that AD can use any address space, there
are some conditions to be kept. The address space used in any
child AD must not collide with the one in AD 0 and If two
neighbouring AD uses the same address space it might cause
problems on the BGW device.4.

In order to avoid the problem of conflicting address space,
the IP45 explicitly prescribes blocks of addresses to be used
on a particular level of AD. The table I shows the division of
existing address space in IP45.

TABLE I: Address Space Used in Different AD Levels

AD level purpose used address

0 global Internet Public
1 reserved -
2 ISP’s network Shared, RFC 6598 [40]
3 reserved -
4 home, organisation Private, RFC 1918 [41]

5-11 reserved -

The division of address space matches the actual standards,
recommendations and common practice of using address space
within the network behind NAT or CGN. Currently, address
space is explicitly defined only for levels 0, 2 and 4. The
address space used on remaining levels might be specified in
future. However, this in fact does not prevent the use of, for
example, private addresses (RFC 1918 [41]) on levels 1,3 or
5, but the administrator must be aware of potential problems.

One of the things the administrator of AD has to take into
consideration is the prefix size used for addressing within AD.
The maximum level of the ADs is limited to 12. It is a special
case when all ADs in the subtree use Upstream Prefix (UP)
with a size of 24 bits. In such cases only 252 nodes can be
addressed within every AD. On the other hand, if the size of
UP in every AD was set to 8 bits, the AD would count more
than 16 million devices; however, the maximum number of
AD levels would be limited to 4 (including the root one, AD
0). In practice, the size of DP in every AD will be decided by
the administrator and different ADs on a different level will
use the size of DP according to their need. Returning back to
figure 3 from section V, the administrator of AD 4 decided to

4The same route entry on two different router interfaces.

use a DP of size 24 bits that might be enough for example for
a home network; but, in AD 2 was decided to use a DP with
the size of 16 bits (ISP’s network) which allows to connect
approximately 60 thousand devices.

VI. FEATURES AND LIMITATIONS

In this section we focus on some interesting features
provided by IP45 design, and make the comparison to other
network architectures. We mainly point out the similarities and
differences with IPv4 and IPv6 because these two architectures
have very mature implementations and provide a significant
record of architectural and operational experience. In table II
there is a raw overview of the key features provided by IP45
design and its comparison with others. Beside IPv6 and IPv4,
IPv4+4 [23] and IPNL [12] are added as a good representative
of alternative approaches. The following sections will discuss
the features in detail.

A. Independent and Hierarchical Addressing

Every Administrative Domain (AD) in IP45 can use its
own address space that can overlap the address space of
another AD (except for AD 0). The final address of devices
inside of AD is composed of the address assigned to a device
and the address derived from the topology of a network.
Once an AD is either reconnected to another parent AD or
connected to multiple parent ADs, the devices inside of the
AD are automatically reached via a new address(es). The
IP45 addresses are hierarchical (topological), and independent.
Those two attributes bring some interesting benefits:

The number of routing information can be decreased
to a minimum. Even if the routing inside of AD can be
very complex with thousands of routes, a child AD can be
designated by a single route record available in the parent
AD. In current Internet routing architecture with the BGP
Autonomous System (AS) as the top of its hierarchy, every
AS can be represented by just one routing entry in the global
routing table (AD 0)6.

The size of the routing entry is limited to four bytes
(the size of IPv4 address) which is enough to cover all routing
needs inside of the AD. At the same time, it is favourable
to routing devices which require lower memory and CPU in
comparison with when the full address has to be processed.

The change of upstream ISP represents a simple recon-
nection of BGW to a different parent AD without any need of
readdressing all devices inside the AD. The site multihoming
can be implemented similarly when the BGW has configured
multiple Upstream Addresses to different parent ADs.

In IPv6, creating the hierarchy of address space was an
integral part of IPv6 from the very beginning [42]. The first
16 bits for top level aggregation, the next 32 bits for next level
aggregation, 16 bits for aggregation within the site and, the
remaining 64 bits are determined to address nodes within the
L2 subnet. However, IPv6 works on every level of aggregation
with complete IPv6 addresses. From the resource perspective,
every entry in the BGP database, routing table or neighbour
cache occupies all 16 bytes, even if only a small part of

5Only for servers as discussed in section V-D
6Traffic engineering or business needs might break that rule.

TABLE II: Features and Network Architectures

Feature IP45 IPv4 IPv4 + NAT IPv6 IPv4+4 IPNL

Hierarchical address space Yes No No Yes No Yes
Address space independency Yes No Yes No Yes Yes
End-to-end addressing Yes Yes No Yes Yes Yes
IPv4 protocol compatibility Yes Yes Yes No Yes Yes
NAT (IPv4) compatibility Yes Yes Yes No No Yes

IPv4 API compatibility *5 Yes Yes No No No
IPv6 API compatibility Yes No No Yes No No
Session independency Yes No No No No No

IPv6 address is relevant for a particular function. The IPv6
addressing scheme is hierarchical but it does not provide
address space independency.

The address space independency used in IP45 is to ap-
proach taken in RINA [33] architecture. The address space
used within AD resembles the one used within DIF, BGW may
refer to the IPC facility managing the routing between (N)-
DIFs, and Upstream Address is similar to Point-of-Attachment.

Nevertheless, address space independency brings a prob-
lem. The IP45 host does not exactly know his own IP45
address. This is not fundamental for most of the common
protocols like HTTP, IMAP, POP3, RDP, but the protocols
which use the IP address inside of the protocol can have
some problems. An application can learn its own IP45 address
from the communicating peer on its own as a part of the
communication exchange. Another option and our proposed
solution is the extension of ICMP protocol with functionality
that can be simply called ”tell me my IP45 address”. Any IP45
host who enables ICMP messages can pass the IP45 address
of querying host back.

B. Protocol and Application Compatibility

IP45 was intentionally designed to be compatible with
existing IPv4 protocols and, where possible, compatible with
NATs. This architectural choice has quite interesting outcomes
with a significant impact on the process of IP45 deployment. It
was our intention not to use the word transition, here. Contrary
to IPv6, IP45 does not require to switch the Internet to a new
protocol completely. IP45 can be deployed incrementally in
small steps according to need. At the first stage BGWs must
be deployed only for servers. It does not matter if a client is
placed behind a NAT or several NATs. This approach is very
different in comparison to IPv4+4 in which middle boxes -
realm gateways - must be deployed for both clients and servers.

In IPv6 the situation is even more complicated. IPv6
protocol was designed as incompatible with IPv4. The decision
provided an advantage of designing IPv6 from scratch, how-
ever, both protocols must run side by side for a certain time and
everything has to be implemented, configured and managed
twice - routing, peering, firewalls, address management/as-
signment, CPEs, first-hop-security, QoS, etc. That obviously
increases the cost of running network and its complexity.
As a result, IPv6 traffic often passes via different paths in
comparison to IPv4 and some services may indicate slower
performance via IPv6 [43], [44], [45]. The problem is even
more significant when any of the common transition techniques
(Teredo [46], ISATAP [47], 6to4 [48]) is used.

The performance issues and failing of IPv6 connections
were a frequent excuse for service and content providers
not to deploy IPv6, the IETF introduced the Happy Eyeballs
[49] mechanism. The application tries to establish a parallel
connection via both, IPv4 and IPv6, and the one that is faster
is kept for transferring data. However, the application has to be
redesigned to use Happy Eyeballs, so only a few applications
(e.g. web browsers) support Happy Eyeballs today. Trying to
decrease the network complexity, IETF brought also DNS64
and NAT64 [50], [51]. These techniques allow clients to use
only IPv6 protocol for accessing IPv4 services. Unfortunately,
many applications do not work properly in an IPv6 only
environment [52]. So the IETF created another mechanism,
464XLAT [53], that provides an illusion of IPv4 connectivity
to the application. Remaining solution is DS-Lite [54] which
tries to solve the same problem as the combination of DNS64,
NAT64 and 464XLAT.

With the IP45 architecture, many of these obstacles can
be avoided. For IP45, the core of the Internet can remain
untouched. There is no reason to upgrade all routers and
maintain two routing hierarchies across the whole Internet.
There is also no reason for adding sophisticated transition
mechanisms which are present in IPv6. In IP45, there are only
two places to be modified or upgraded - hosts and NAT device
(BGW) in front of servers. Another positive side effect of the
IPv4 compatible design is in sharing the same data path by
both IPv4 and IP45 packets. This minimizes the risk that the
delivery of IP45 packets will have different parameters, e.g.
reliability, round trip time, etc.

The expected position of BGW is on the existing NAT
device (home CPE, corporate CGN). Since the operation per-
formed by BGW is quite simple, the extension of the existing
implementations should not be a big issue. When a device
begins to support BGW operations, the IP45 traffic will be
automatically processed by BGW code. Unlike NAT, BGW is
a stateless engine that saves resources on the device (memory,
lookups) and it is easy to implement. So the motivation to
extend NAT devices by BGW’s code is quite apparent.

The disadvantage of backward IPv4 and NAT compatibility
is in a not well-arranged packet header. If we look at the
packet’s fields, as was clarified in chapter V-B, we can find
that almost 14 bytes of the IP45 packet header do not carry
any meaningful information. This problem could be solved
in future, if the IP45 traffic was significant. The IP45 packet
header can be reshaped into a more efficient structure by
removing useless filed inclusive checksum. Contrary to IPv6,
such shortened packets will not be used along the whole path
between the source and destination, but only between IP45

hosts or IP45 capable routers to exchange packets on the link
layer. In some suitable way (for example through modified
ARP protocol), the nodes inform each other that they are able
to process packets with a shortened IP45 header. If the nodes
do not indicate such capability, the standard IP45 header will
not be used. This way, the bandwidth on links can be saved
and routers do not need to check and recompute checksums.

So far we have discussed only protocol compatibility -
whether IP45 packets can be delivered over existing IPv4
and NAT infrastructure. A different matter is the application
compatibility. Every new protocol typically proposes a new
socket API for using the protocol. It means that all applications
have to be redesigned or at least recompiled to use such
API. In the same way IPv6 API was designed. Since the past
decade, most of operating system, programming languages and
applications have already adopted it and started using it with no
significant troubles. For that reason IP45 reuses the same API.
Any application that has already been redesigned for using
IPv6 API can use IP45 immediately without an additional
modification (discussed in V-D).

C. Session Independency

In IPv4 and IPv6 every session is defined by the source and
destination address, protocol and protocol specific identifier
such as UDP or TCP port. In IP45 the source and destination
address is replaced by the single session identifier SID. This
brings several interesting options. The SID can be used for the
construction of load balancers or a simplified statefull firewall
with no need to know the content of the transport protocol.
Mobility and multihoming is another, more interesting use of
SID. The IP45 address of the session can smoothly change
without breaking the running session. When an AD is recon-
nected to some other parent AD, all sessions keep running. If
the protocol supports some kind of pervasion mechanism such
as TCP keepalive, the simplified multihoming and mobility
of the client can work automatically. The solution is very
similar to small site multihoming provided by SHIM6 [55]
or DoA architecture [27]. Some simmilar functionality can
also be provided by IPv6-to-IPv6 Network Prefix Translation
[14]. However, when the site is reconnected to another one,
all ongoing sessions are broken.

To provide fully-fledged mobility in IP45, it must be
equipped with extra mechanisms. The problem of server mo-
bility comprises two partial problems. Firstly, to make an initial
connection to a proper IP45 address, secondly, to properly
”redirect” the ongoing session to the new IP45 address. While
the former can be solved via DNS, the latter case requires ex-
tending by a simple keep-alive protocol to inform peers about
a new IP45 address. Contrary to the traditional multihoming
approach like IPv6 mobility [56], or LISP [29], there is no
need of a meeting point (e.g. home agent in mobile IPv6) or a
distributed mapping database (RLOC:EID database in LISP).

The SID may also bring some problematic issues. The SID
is created by clients as a randomly generated 16 byte number
when the session is initialized. If two hosts create the same
conflicting SID at the same time and try to connect to the same
server using the same source and destination ports, the server
will not be able to distinguish between them. Although, the
probability of such collision is extremly low, it is still possible.

For that reason IP45 extends ICMP messages by a new type
of message indicating the collision in SID. If the server during
the initial handshake recognises that the same SID is already
used, an ICMP message is sent back to the client. The client
can create a new SID and make a new attempt to establish the
connection. A problem that remains is that this method can be
used only in protocols performing the initial handshake.

Another problem of the SID is related to the security. If an
attacker has an access to the data of running communication,
the SID can be easily wiretapped. Then, the attacker can
redirect the traffic from both the client and server, to his own
IP45 address. A similar situation, but less presumable, may
happen if the attacker guesses the SID and other commu-
nication parameters like ports, tcp sequence number etc. To
prevent such situations, the socket implementation on both the
client’s and server’s side can use a special socket option which
disallows the changing of the address during the session. If this
option is set, the packets from different peers are ignored. Such
an option enables the application to decide whether preffers to
avoid possible hijacking or use features regarding mobility.
The security of the session can be solved on the higher level,
for example, via IPSEC or SSL/TLS.

VII. IMPLEMENTATION AND TESTING

The description of implementation and evaluation of the
protocol is relatively a complex topic which would exceed the
limitation of this paper. For that reason we decided to provide
only basic information and the in-depth description will be
provided in a separate paper. Based on the proposed design,
we have implemented all necessary components as follows:

The IP45 Host is implemented as a patch for Linux kernel
sources and it is available for kernel 3.x.x. After applying the
patch and rebuilding the kernel sources, the host is able to act
as a fully capable IP45 host. The userspace IP45 Host imple-
mentation is available for remaining platforms. It is designed
as the deamon for Unix-like POSIX platforms (Linux, OS X,
FreeBSD) or as the system service for a Windows platform. For
Linux and Windows the pre-built binary packages are prepared.

The Border Gateway is implemented as a module to Linux
iptables. The module can be easily added into any Linux
distribution using a non-archaic kernel (2.6 and higher). For
routers based on OpenWrt we created pre-built packages that
can be easily installed into any OpenWrt router via a router’s
web interface.

Besides this, there are some optional components making
the testing or debugging of IP45 more comfortable:

Libc Extension for Glibc updates system functions which
are responsible for converting the human notation of the IP
address into a binary number and back. This patch extends
the standard system calls (inet ntop, inet pton) to be able to
convert the IP45 address as well.

Extension for tcpdump and wireshark which allows both
tools to display IP45 packets in human-readable format.

All developed components, project repository and docu-
mentation are permanently available on the project’s web page
[57]. For software packages, we developed a cross-platform
build system that automatically rebuilds all components and
packages.

For testing the behaviour of IP45, we started with a small
laboratory setup consisting of several servers, border gateways
and NAT devices. In a very short time we discovered that there
is little to test under artificial conditions. The performance of
all components was almost the same as for IPv4 traffic (several
Gb/s). Therefore we decided to step outside of a laboratory
and started to use IP45 in the wild. To demonstrate the basic
functionality of IP45, a short video record was prepared. The
record demonstrates two communicating IP45 Hosts placed in
three different ISP’s networks behind 3 NATs and BGWs. The
first host (Linux with the kernel patch) connects to the remote
desktop of the second host (OS X with userspace daemon)
using VNC. The second host connects back to the first one with
secure shell (ssh). During the session, the link was connected
to the ISP, then it was intentionally broken and the record
demonstrates how the traffic was redirected to the backup ISP
without breaking both established sessions. The record is also
publicly available on the project’s web site [57].

Today, all servers on which the development of IP45 is
performed are accessible only via IP45, so we are made to use
IP45 and the IP45 traffic is currently mixed with a production
traffic and production environment.

VIII. SUMMARY AND FUTURE WORK

This paper describes a hierarchical network architecture
which extends IPv4 address space by regaining end-to-end
connectivity in NATed networks. It is backwards compatible
with IPv4 and NATs and can be deployed only in places where
it is needed. Contrary to IPv6, it does not require a complete,
challenging and costly transition to a new protocol. From the
architectural perspective, the IP45 implements address space
and session independency what brings interesting build-in
features like simplified mobility and multihoming.

To demonstrate the feasibility of the IP45 architecture, we
implemented all necessary components for commonly used
platforms (Windows, Linux, OS X) and we started using the
protocol on daily basis together with ordinary applications
(mail, web, ssh, rdp). Our implementation also proved that
the IP45 host support can be easily implemented even on
”closed” platforms without any need for modifications of
existing applications.

In the near future, there are several areas we would
like to focus on. Firstly, extend the spread of IP45 host
implementation to as many platforms as possible. In order
to obtain broader experience in a heterogeneous environment,
we would like to extend the support to mobile platforms
and make packages available on standard application delivery
platforms such as the App Store, Google Play and Windows
Phone Store. We would also like to pursue a profound research
of possibilities provided by SID. We feel that this area is
full of the potential to unearth interesting and inspirational
capabilities which have not been explored enough. In the
area of standardization, we would like to submit the protocol
specification into IETF as the experimental RFC. However, it
may be quite difficult since it is not likely that IETF will be
eager to approve the solution which prolongs the existence of
NAT.

REFERENCES

[1] J. Curran, “An Internet Transition Plan.” RFC 5211 (Informational),
July 2008.

[2] G. Houston, “IPv6: IPv6 / IPv4 Comparative Statistics.” Online http:
//bgp.potaroo.net/v6/v6rpt.html. Accessed May 02, 2014.

[3] “Google IPv6 Statistics.” Online http://www.google.com/intl/en/ipv6/.
Accessed May 02, 2014.

[4] “6lab.cz - Statistics.” Online http://6lab.cz/live-statistics/web/. Accessed
May 02, 2014.

[5] “6lab.cisco.com - Statistics.” Online http://6lab.cisco.com/. Accessed
May 02, 2014.

[6] “IPv4 Market Group.” Online http://ipv4marketgroup.com/home/, 2013.
Accessed January 19, 2014.

[7] E. Osterweil, S. Amante, D. Massey, and D. McPherson, “The great
IPv4 land grab: resource certification for the IPv4 grey market,”
HotNets-X, (New York, NY, USA), pp. 12:1–12:6, ACM, 2011.

[8] “Verizon DSL moving to CGN, NANOG Mailing List Archive.” Online
http://www.gossamer-threads.com/lists/nanog/users/162187. Accessed
May 02, 2014.

[9] “Customers fume as BT introduces IP sharing,” PC Pro magazine,
vol. 2013, no. 1, 2013.

[10] I. Pepelnjak, D. Markovič, and D. Spasojevič, “Small Site Multi-
homing.” Online http://stack.nil.com/ipcorner/SmallSiteMultiHoming.
Accessed January 19, 2014.

[11] L. Daigle and IAB, “IAB Considerations for UNilateral Self-Address
Fixing (UNSAF) Across Network Address Translation.” RFC 3424
(Informational), Nov. 2002.

[12] P. Francis and R. Gummadi, “IPNL: A NAT-extended internet archi-
tecture,” SIGCOMM Comput. Commun. Rev., vol. 31, pp. 69–80, Aug.
2001.

[13] O. Troan and R. Droms, “IPv6 Prefix Options for Dynamic Host Con-
figuration Protocol (DHCP) version 6.” RFC 3633 (Proposed Standard),
Dec. 2003. Updated by RFC 6603.

[14] M. Wasserman and F. Baker, “IPv6-to-IPv6 Network Prefix Transla-
tion.” RFC 6296 (Experimental), June 2011.

[15] J. Day, Patterns in Network Architecture - A Return to Fundamentals.
Prentice Hall, 2008. ISBN 978-0-13-225242-3.

[16] V. Jacobson, “LNAT — Large scale IP via Network Address Trans-
lation.” Working Draft. Online ftp://ftp.ee.lbl.gov/.van/nat.pdf, 1992.
Accessed May 02, 2014.

[17] B. M. Sousa, K. Pentikousis, and M. Curado, “Multihoming Manage-
ment for Future Networks,” Mob. Netw. Appl., vol. 16, pp. 505–517,
Aug. 2011.

[18] P. Francis, “PIP Near-term Architecture.” RFC 1621, May 1994.

[19] M. McGovern and R. Ullmann, “CATNIP: Common Architecture for
the Internet.” RFC 1707, Oct. 1994.

[20] R. Callon, “TCP and UDP with Bigger Addresses (TUBA), A Simple
Proposal for Internet Addressing and Routing.” RFC 1347 (Informa-
tional), June 1992.

[21] Z. Wang, “EIP: The Extended Internet Protocol.” RFC 1385 (Historic),
Nov. 1992. Obsoleted by RFC 6814.

[22] C. Pignataro and F. Gont, “Formally Deprecating Some IPv4 Options.”
RFC 6814 (Proposed Standard), Nov. 2012.

[23] Z. Turanyi and A. Valke, “IPv4+4,” 2012 20th IEEE International
Conference on Network Protocols (ICNP), vol. 0, p. 290, 2002.

[24] A. Campbell, J. Gomez, S. Kim, A. Valko, C.-Y. Wan, and Z. Turanyi,
“Design, Implementation, and Evaluation of Cellular IP,” Personal
Communications, IEEE, vol. 7, no. 4, pp. 42–49, 2000.

[25] C. Topal and C. Akinlar, “Implementing IPv4+4 Addressing Architec-
ture with IPv4 LSRR Option for Seamless Peer-to-Peer (P2P) Commu-
nication,” vol. 4742 of Lecture Notes in Computer Science, pp. 809–820,
Springer Berlin Heidelberg, 2007.

[26] M. O’Dell, “GSE - An Alternate Addressing Architecture for IPv6.”
Internet-Draft, 1997. Draft draft-ietf-ipngwg-gseaddr, no. 00.

[27] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and
S. Shenker, “Middleboxes no longer considered harmful,” in Proc.
USENIX OSDI, (San Francisco, CA), December 2004.

[28] V. Veselý and M. Švéda, “Comparison of proposals suggesting internet
architecture change,” in Sbornı́k přı́spěvků Mezinárodnı́ Masarykovy
konference pro doktorandy a mladé vědecké pracovnı́ky 2013, pp. 1–11,
Siemens A.G., 2013.

[29] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “The Locator/ID
Separation Protocol (LISP).” RFC 6830 (Experimental), Jan. 2013.

[30] I. Castineyra, N. Chiappa, and M. Steenstrup, “The Nimrod Routing
Architecture.” RFC 1992, Aug. 1996.

[31] D. R. Cheriton and M. Gritter, “TRIAD: A Scalable Deployable NAT-
based Internet Architecture,” tech. rep., Stanford University, 2000.
Accessed May 02, 2014.

[32] S. Guha and P. Francis, “An end-middle-end approach to connection
establishment,” SIGCOMM ’07, (New York, NY, USA), pp. 193–204,
ACM, 2007.

[33] J. Day, I. Matta, and K. Mattar, “Networking is IPC: A Guiding
Principle to a Better Internet,” CoNEXT ’08, (New York, NY, USA),
pp. 67:1–67:6, ACM, 2008.

[34] M. Boucadair, R. Penno, and D. Wing, “Universal Plug and Play (UPnP)
Internet Gateway Device - Port Control Protocol Interworking Function
(IGD-PCP IWF).” RFC 6970 (Proposed Standard), July 2013.

[35] S. Cheshire and M. Krochmal, “NAT Port Mapping Protocol (NAT-
PMP).” RFC 6886, Apr. 2013.

[36] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal
Utilities for NAT (STUN).” RFC 5389 (Proposed Standard), Oct. 2008.

[37] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture.”
RFC 4291, Feb. 2006.

[38] J. Postel, “Internet Protocol.” RFC 791, Sept. 1981.

[39] J. Postel, “User Datagram Protocol.” RFC 768, Aug. 1980.

[40] J. Weil, V. Kuarsingh, C. Donley, C. Liljenstolpe, and M. Azinger,
“IANA-Reserved IPv4 Prefix for Shared Address Space.” RFC 6598,
Apr. 2012.

[41] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear,
“Address Allocation for Private Internets.” RFC 1918 (Best Current
Practice), Feb. 1996.

[42] R. Hinden, M. O’Dell, and S. Deering, “An IPv6 Aggregatable Global
Unicast Address Format.” RFC 2374 (Historic), July 1998. Obsoleted
by RFC 3587.

[43] A. Dhamdhere, M. Luckie, B. Huffaker, k. claffy, A. Elmokashfi, and
E. Aben, “Measuring the Deployment of IPv6: Topology, Routing and
Performance,” IMC ’12, (New York, NY, USA), pp. 537–550, ACM,
2012.

[44] M. Nikkhah, R. Guérin, Y. Lee, and R. Woundy, “Assessing IPv6
Through Web Access a Measurement Study and Its Findings,” CoNEXT
’11, pp. 26:1–26:12, ACM, 2011.

[45] M. Grégr, T. Podermański, and M. Švéda, “Measuring quality and
penetration of ipv6 services,” in ICNS ’14, pp. 96–101, Institute for
Systems and Technologies of Information, Control and Communication,
2014.

[46] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs).” RFC 4380 (Proposed Standard), Feb.
2006.

[47] F. Templin, T. Gleeson, and D. Thaler, “Intra-Site Automatic Tunnel
Addressing Protocol (ISATAP).” RFC 5214 (Informational), Mar. 2008.

[48] B. Carpenter and K. Moore, “Connection of IPv6 Domains via IPv4
Clouds.” RFC 3056 (Proposed Standard), Feb. 2001.

[49] D. Wing and A. Yourtchenko, “Happy Eyeballs: Success with Dual-
Stack Hosts.” RFC 6555, Apr. 2012.

[50] M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum, “DNS64:
DNS Extensions for Network Address Translation from IPv6 Clients to
IPv4 Servers.” RFC 6147, Apr. 2011.

[51] M. Bagnulo, P. Matthews, and I. van Beijnum, “Stateful NAT64:
Network Address and Protocol Translation from IPv6 Clients to IPv4
Servers.” RFC 6146, Apr. 2011.

[52] G. Chen, Z. Cao, C. Xie, and D. Binet, “NAT64 Operational Experi-
ence.” (Internet-Draft), 2014. Draft draft-ietf-v6ops-nat64-experience,
no. 08.

[53] M. Mawatari, M. Kawashima, and C. Byrne, “464XLAT: Combination
of Stateful and Stateless Translation.” RFC 6877, Apr. 2013.

[54] A. Durand, R. Droms, J. Woodyatt, and Y. Lee, “Dual-Stack Lite Broad-
band Deployments Following IPv4 Exhaustion.” RFC 6333 (Proposed
Standard), Aug. 2011.

[55] E. Nordmark and M. Bagnulo, “Level 3 Multihoming Shim Protocol
for IPv6.” RFC 5533, June 2009.

[56] C. Perkins, D. Johnson, and J. Arkko, “Mobility Support in IPv6.” RFC
6275 (Proposed Standard), July 2011.

[57] “ip45.org - Project Webpage.” Online http://www.ip45.org/. Accessed
May 02, 2014.

